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Trends in Modern HPC Systems: Interconnects lag behind
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(37632 GPUs) ARM CPU, a GPU-like processor) (2,240 GPUs)
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Motivation

e Disparity between intra-node and inter-node GPU communication prevents

efficiently scaling applications to larger GPU systems

e Bandwidth of IB network is saturated for large message
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(a) Disparity between intra-node and inter-node GPU communication on
Sierra OpenPOWER supercomputer [1] (b) Saturated bandwidth at large message size

[1] K. S. Khorassani, C.-H. Chu, H. Subramoni, and D. K. Panda, “Performance Evaluation of MPI Libraries on GPU-enabled OpenPOWER Architectures: Early Experiences”,
in International Workshop on Open-POWER for HPC (IWOPH 19) at the 2019 ISC High Performance Conference, 2018.
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Research Challenges

e For HPC and Deep Learning applications on modern GPU clusters

— What are the other techniques—besides improving the communication
bandwidth—that can be used to reduce the communication time?

v Compression can reduce the data size and lower the pressure on network with
limited bandwidth

— How can we design efficient on-the-fly message compression schemes to improve
the performance of these applications?

v' We integrate GPU-based compression algorithms into MVAPICH2-GDR with
optimization to achieve high performance on-the-fly message compression for

v Point-to-point operations

v" Various collective operations (Alltoall, Allgather, Broadcast, Reduce Scatter)
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Overview of the MVAPICH2 Project

o High Performance open-source MPI Library ﬁ/%//,_-‘
. Support for multiple interconnects /
- InfiniBand, Omni-Path, Ethernet/iWARP, RDMA over Converged Ethernet (RoCE), / \ AR ", -
and AWS EFA, Rockport Networks, and Slingshot ‘ COUﬂtlng’ —\ﬁ\w»é—
2001-2024 7D

o Support for multiple platforms

- x86, OpenPOWER, ARM, Xeon-Phi, GPGPUs (NVIDIA and AMD)

o Started in 2001, first open-source version demonstrated at SC ‘02 Used by more than 3,375 organizations in 91 countries

e Supports the latest MPI-3.1 standard . More than 1.76 Million downloads from the OSU site

o http://mvapich.cse.ohio-state.edu directly

. Additional optimized versions for different systems/environments: Empowering many TOPS00 clusters (June‘23 ranking)

- MVAPICH2-X (Advanced MPI + PGAS), since 2011 - 11th, 10,649,600-core (Sunway TaihuLight) at NSC, Wuxi, China

- MVAPICH2-GDR with support for NVIDIA (since 2014) and AMD (since 2020) GPUs — 29", 448, 448 cores (Frontera) at TACC
- MVAPICH2-MIC with support for Intel Xeon-Phi, since 2014 - 46th, 288,288 cores (Lassen) at LLNL
- MVAPICH2-Virt with virtualization support, since 2015 - 61, 570,020 cores (Nurion) in South Korea and many others

- MVAPICH2-EA with support for Energy-Awareness, since 2015 . .
op &y e Available with software stacks of many vendors and

Linux Distros (RedHat, SuSE, OpenHPC, and Spack)

- MVAPICH2-Azure for Azure HPC IB instances, since 2019
- MVAPICH2-X-AWS for AWS HPC+EFA instances, since 2019

. Tools: . Partner in the 29t ranked TACC Frontera system

= OSUMPI Micro-Benchmarks (OMB), since 2003 e Empowering Top500 systems for more than 18 years
- 0OSU InfiniBand Network Analysis and Monitoring (INAM), since 2015
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Framework of GPU-based on-the-fly compression

« Compression algorithms MPC and ZFP are integrated into MVAPICH2-GDR

 Rendezvous protocol is used to send the header data and compressed data

Compress \ Decompress
‘.Header | R
MPC J = | Data | * MPC
Original | . ' . Original
Data ' v — Data
_ J . y Compressed | R .
= Data [
Sender Receiver

Framework of GPU-based on-the-fly compression [2]

[2] Q. Zhou, C. Chu, N. Senthil Kumar, P. Kousha, M. Ghazimirsaeed, H. Subramoni, D. Panda, “Designing High-Performance MPI Libraries with On-the-fly
Compression for Modern GPU Clusters”, in 35th IEEE International Parallel & Distributed Processing Symposium, May 2021. [Best Paper Finalist]
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Data Flow: Point-to-Point On-the-fly Compression

e Data flow

. Launch compression kernel with control parameters
Run compression kernel on GPU

Return compressed size

Send header data with RTS packet

Send compressed GPU data

Launch decompression kernel with header data

N o O s~ 0 bd =

Run decompression kernel to restore the data.
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Limitation of Point-to-Point compression for Alltoall

o AlltoAllis one of the most communication-intensive MPI operations that become the bottleneck
of efficiently scaling these applications(e.g, PSDNS, DeepSpeed) to larger dense GPU systems

e Existing Point-to-Point based compression has limitation of
overlapping compression/decompression kernels across send/receive operations.
e How to overcome the limitation of Point-to-Point based compression to accelerate applications?
— Move the point-to-point compression to the collective-level

— Revamp and optimize GPU-based compression for the collective-level online compression

m FFT compute time 40 Existing DeS|gn utilizing pomt to pomt 4
. F i \
= Alltoall runtime L | PSDNS I  Initiate | Wait for Kernel 1 Initiate | Wait for Kernel 2 Initiate | Wait for Kernel 3 | ia
1 00% - | | Kernel 1 (WFK 1) Kernel 2 (WFK 2) Kernel 3 (WFK 3) }O
_ 30 T | | ‘\,” | )
N A e [ =)
75% I i l Mo s
;: 20 T | ! Proposed Design |
50% g r | N b
%] 1 0 L | | Initiate  Initiate  Initiate WFK WFK WFK }E
250/ E - | | ‘ Kernel 1 Kernel2 Kemel3 | 1 |57 = | 2 | 7577 | 3 | 757 ° S — I 1O
° - i | | L
0+ T ' ! T —! \' = o= I Expected Benefits b
0% | - o | i |5
. (0]
4 '\?&6&&' N '\?\ N ,\@\ L = I I
. L
GPUS Message Size (Bytes) Start Fl'lusllpmposed Finisheyisting

(a) PSDNS Time Breakdown (b) AlltoAll Latency for 8 GPUs on 2 Longhorn(V100) nodes Compare point-to-point compression operations versus proposed design
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Host-Staging based Collective-level Compression

e Data Flow of Host-Staging based Collective-level Compression
— 1. GPU data is compressed to the temporary device buffer and copied to the host buffer asynchronously
— 2. MPI_lsend sends out the data in the host buffer to other CPUs
— 3. MPI_Irecv receives the data to the host buffer from other CPUs

— 4. Received data is copied to the temporary device buffer asynchronously and decompressed to the target buffer

High-Performance Network

GPU, CPU, CPU, GPU,
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Optimization for Host-staging based Compression

e Enabling Multiple CUDA Streams in ZFP Library
— Design new APIs zfp_compress_multi_stream and zfp_decompress_multi_stream
— Propose new execution policy zfp_exec_cuda_multi_stream

e Co-design the GPU-based compression at the collective level
— 1. Launch compression/decompression kernels on multiple CUDA streams

— 2. Use same stream for data movement (D->H, H->D) and the corresponding compression/decompression kernels

— 3. Achieve overlap between the compression/decompression kernels across multiple send/receive operations

MPI Isend MPI_Isend MPI_Isend MPI Isend MPI_IrecvMPI_Irecv MPI_Irecv MPI Irecv
[ CcPU \m \t|:| \tlj \h
CPU|  mmmommenrrrst—— 1 / O sl
Stream(]%%%l Stream, {H=D  Decompress | ..o
GPU Streaml[: = Compress === :: GPU Streamz:________:____[__l—!j]_)__l Decompress I_ = = _____________________________________________________I
Streamzf_____ Compress | ____________(D=H Stream3:' _______________ (H=D ] Decompress ]
Stfeamg\___ Compress J | E ___________________ : Stream 4"____________________________ ________________ [ H—D | Decompress l ______________________________________
Timeline Timeline
(a) Send operations (b) Receive operations

[3] Q. Zhou, P. Kousha, Q. Anthony, K. Khorassani, A. Shafi, H. Subramoni, and D. K. Panda, Accelerating MPI All-to-All Communication with Online Compression on Modern GPU Clusters.
ISC High Performance 2022, May 2022.
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Application-Level Evaluations (DeepSpeed Benchmark)

e Improvement compared to MVAPICH2-GDR with Point-to-Point compression

— Reduces All-to-All runtime by up to 26.4% with ZFP(rate: 16) on 32 GPUs

— Improves the throughput by up to 35.8% with ZFP(rate: 16) on 32 GPUs

All-to-All runtime
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M Proposed (zfp rate:16)

@ 40 - B Proposed (zfp rate:8)

£

> i

c 26. 4%

.8 20 I ----- I

©

4 -

o J I.II IIII III III

GPUS

Lassen system (NVIDIA V100)
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Broadcast with Collective-level Online Compression

e Chunked-Chain based Broadcast with Collective-level Online Compression
— Launch ZFP compression/decompression kernel on non-default CUDA stream to achieve overlap
— Middle ranks send the received compressed data to the right rank and only run decompression

— Launch an MPI_Bcast operation to transfer the compressed message sizes of all the chunks

Root Middle Last [ Compression []Decompression ] Compression []Decompression

i — Rank 0 Rank 1 Rank 2 Rank 3 Rank 0 Rank 1 Rank 2 Rank 3
GPUO GPU1 GPU2 GPU3
( N h @ N\ B\
Data 1 I N N i O
Chunks L2 éL i &
3 = == — B
N1 |C2] 2 i 1 2]
[ 31 ||C3]||C31||C3]
compress ) USR] HERE WEREE] LS
Decompress t : : : 5
N [N ]| | LN | [N
%_ _/_ A\ _/_\ _J_\ J
(a) Data Flow of Broadcast with

Collective-level Compression (b) Collective-level Compression vs. Point-to-Point Compression

Q. Zhou, Q. Anthony, A. Shafi, H. Subramoni, and D. K. Panda, Accelerating Broadcast Communication with GPU Compression for Deep Learning Workloads,
29th IEEE International Conference on High Performance Computing, Data, and Analytics (HiPC '22), Dec 2022.
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Application-Level Evaluations (PyTorch DDP training)

e PyTorch (v1.12) DDP training with ZeroRedundancyOptimizer on CIFAR10 dataset

e Improvements compared to original Chunked-Chain and Point-to-Point compression
— Reduces training time by up to 15.0% with ZFP(rate: 8) on 64 GPUs vs. Chunked-Chain
— Reduces training time by up to 6.4% with ZFP(rate: 8) on 64 GPUs vs. Point-to-Point compression

— Training accuracy converges to similar value as original Chunked-Chain Broadcast

ResNeXt101-32x8d ResNeXt101-32x8d ResNeXt101-32x8d
= = Chunked Chain = MVAPICH2-ZFP(rate:16) —=—Chunked Chain ~ —s—ZFP(rate:16) ——ZFP(rate:8) —=—Chunked Chain —e—ZFP(rate:16) ~—+—ZFP(rate:8)
= 40 ®MVAPICH2-ZFP(rate:8) ™ ZFP(rate:16) o o
S m ZFP(rate:8) 100% 100%
o — R0 —_ R0
530 = 80% G 80%
B = 60% = 60
% 20 2 602 g 60%
= 2 40% g 40%
an 2
i 1 T T
s 0 I 0% 0%
= 8 16 32 64 123456789I101112131415161718192021222324252627282930 123456789101112131415161718192021222324252627282930
GPUs Epochs Epochs
Training Time per epoch Training Accuracy Training Accuracy
(BS=128, LR=0.001) on Longhorn (NVIDIA V100) (8 GPUs) on Bridges-2 (NVIDIA V100) (16 GPUs) on Bridges-2 (NVIDIA V100)
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Fu"y Sharded Data Para"el (FSDP) Fully Sharded Data Parallel Training

e For Deep Learning training on modern GPU clusters Data
— Model size has been increasing greatly (BERT, GPT, ...)
.| Model Model <
—  Fully Sharded Data Parallel (FSDP)* scheme has been " | Shard shard
introduced in PyTorch (v1.11) to shard the parameters, v riood v
. L. All-gather |« ++——— —» | All-gather
gradients, and optimizer states of the DL models amongst v
multiple GPUs. Fﬂ;v:aaﬁd il — FEL”!:‘.E"
— Relies on the Allgather and Reduce-Scatter communication Nlayers Nlayers
Gather
o . . the
primitives to gather weights and sync up gradients. T DRI
— Brings extra communication cost in training of large DNN
Backward
models. (local)
Sync
Reduce- grads Reduce-
scatter | scatter
N layers N layers
Y \ 4
Update Update
loca) loca)”
] L
PyTorch, “Fully Sharded Data Parallel (FSDP),” https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api
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Bottleneck of Allgather and Reduce-Scatter in FSDP

e Existing Allgather and Reduce-Scatter algorithms for transferring large GPU data suffer from
poor performance due to the limited interconnect bandwidth between the GPUs.

e Allgather and Reduce-Scatter communication primitives add large overheads to the training
of large models

o GPUs o GPUs
A W A0 | BO 60 600
B Al B1 F ResNeXt101-32x8d: { ResNeXt101-32x8d:
- el S50 + 21.2M 500 21.2M
= 40 £ ResNet152: =400 ResNetl52:
| 1 BEE g 14.4M 14.4M
* ‘5130 1 VGG16: ‘5300 VGGI16:
S0 F 8.5M = 8.5M
A ‘ A A i ‘ 320 ResNet50: 3200 ResNet50:
< E <
! S+ 6.1M S 100 6.1M
B B B C
i 0 T T 0 T
h@*’é‘@“@“@‘@@ 6&'@“@@@@9
Message size (Bytes) Message size (Bytes)

(a) Allgather and Reduce-Scatter operatlons[Z] (b) Allgather latency with 16 V100 GPUs (c) Reduce-Scatter latency with 16 V100 GPUs

https://engineering.fb.com/wp-content/uploads/2021/07/FSDP-graph-2a.png?w=1024
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Ring-based Allgather Communication with Collective-
IEVEI Online ComprESSion Compﬂression Decorr!pression Loc;‘copy MPI_Isend/IreC\:/
— e e e

e Each GPU copies the its own data from send @ @ @ @ﬂ
TOTOT
[ B

buffer to the receiver buffer directly

e Compression operation is only executed once

e MPI_Irecv is posted immediately after
launching compression on non-default stream

e MPI_Isend is posted to send out the

compressed data

e Decompression kernel is launched on a non-
default CUDA stream to restore the data

Q. Zhou, Q. Anthony, L. Xu, A. Shafi, M. Abduljabbar, H. Subramoni, and D. K. Panda,
Accelerating Distributed Deep Learning Training with Compression Assisted Allgather and Reduce-
Scatter Communication, 37th IEEE International Parallel Distributed Processing Symposium
(IPDPS "23), May 2023.
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Ring-based Reduce-Scatter Communication with

Collective-level Online Compression
] L.

Compression Decompression Local copy MPI_lsend/Irecv Reduction

e Data elements on each GPU are scattered
to all the corresponding GPUs

e Compression kernel is launched for data

element or reduction result -|-<1'-|

Reductlon :
e Launch reduction kernel on GPU to get

the aggregated result

e MPI_lsend/Irecv transfer compressed ~  --------—-—- |

--I- | A0 1o T Reduction |
[ Redluction : [ B0 BJ co [
e Decompression kernel is launched to [

data element or reduction result

restore data element or reduction result o
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Application-Level Evaluation (FSDP Training)

e PyTorch FSDP training performance
— Use enhanced MPI backend with proposed compression designs for Allgather and Reduce-Scatter
— Reduces training time by up to 31.7% (32 GPUs, ZFP rate: 10) vs. Baseline
— Reduces training time by up to 12.5% (32 GPUs, ZFP rate: 10) vs. Point-to-Point compression (“P2P”)
ResNet152 ResNeXt101-32x8d
25 H Baseline
m P2P-ZFP(rate:16)

m P2P-ZFP(rate:10)
u Coll-ZFP(rate:16)

m P2P-ZFP(rate:10)
® Coll-ZFP(rate:16)
u Coll-ZFP(rate:10) 15 1 Coll-ZFP(rate:10)
; 1
12.5% 31.7%
Il : I ||| N
i <, | ling
8

16 32 64 8
GPUs GPUs
Cluster: Longhorn(NVIDIA V100), Dataset: CIFAR10, Batch Size=128, Learning Rate=0.001

® Baseline

u P2P-ZFP(rate:16)
20

Training Time/ Epoch (s)
(el

Training Time/ Epoch (s)
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Application-Level Evaluation (FSDP Training)

e PyTorch FSDP training accuracy
— Use enhanced MPI backend with proposed compression designs for Allgather and Reduce-Scatter

— Proposed design with ZFP compression (rate:16, rate:10) achieves similar convergent training

accuracy vs. Baseline

— Big accuracy drop and large variance with lower compression rate: 8 due to larger compression

errors added to weights and gradients

ResNet152 ResNext101-32x8d DenseNet201
——Baseline ~—ZFP(rate:16) ——Baseline ~——ZFP(ratc:16) ——Baseline ——ZFP(rate:16)
100% ——ZFP(rate:10) ZFP(rate:8) 100% —ZFP(rate:10) ZFP(rate:8) 100% ——ZFP(rate:10) ZFP(rate:8)

% o -~ 280%
§80/ §80°/ é 0 if‘"’
S60% F60% 5 60%
Q
£ 40% £ 40% / = 40%
Q - 5] g Q
Q20% e 3 20% / 220%

0% 0% 0% |
=Rt tab il rbaeitat Snp 3oN: S0t TR SR AT R R SR E SR &S 8 =S TEZRCTATREIEZZG AL ACH
Epochs T Epochs T Epochs
Cluster: Pitzer(NVIDIA V100), Dataset: CIFAR10, Batch Size=128, Learning Rate=0.001
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LLM training with Hybrid Compression design

e For LLM training on modern GPU clusters / Data Parallel Rank 0 \ / Data Parallel Rank 1

Pipeline Stage 0 Pipeline Stage 0

— Model size exceeds memory capacity

Wy
7 L =55 | |3 7 '
adopted with : _”____l: S___| |3 3 ____ 4o
T A B o ® o
Megatron+DeepSpeed to efficiently perform | |® “"' : % < | |3 5 E
training across thousands of GPUs. S i "‘ >
(Allreduce) z = H 3
& 1 Global ) g
(POlnt'tO'p0|nt) Pipeline Stage 1 Gradients

Pipeline Stage

ik

= 1 o - » 1
(Allgather + Allreduce) E ” ! < E 3 . [
3 I gl 1o __ | |? 5 | TTTC 0% __
(Reduce-Scatter + Allgather) I /I/‘I ': g ? 7 I/[I/[II/’ E
1 c (9] o
| w I
— Heavy communication saturating \ peworares &7 osa / k eerkimests 05

interconnect bandwidth
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Hybrid Compression Solution

e Naive ZFP or MPC solution poses
different pros and cons

— Lossy ZFP provides speedups but
degradation in accuracy

— Lossless MPC maintains baseline
accuracy but degradation in
throughput

e DP Gradients are sparse, MP
activations are dense

— Possible Hybrid solution for
according parallelism degree

CPU IBM Power9 44
Cores/Node
Memory 256GB
GPU NVIDIA Tesla V100
(32GB)

Interconnect InfiniBand EDR 100GB/s

Experiment setup

Lassen cluster

Applications
Large Language Models

DL Frameworks
) 4 ¥

[ Pytorch Distributed ]

Message Passing Interface

zFP |- MPC
MVAPICH2-GDR

setu P
Model GPT-NeoX-
20B
Dataset Books3
PP 6
Degree
MP 4
Degree
Grad 1
Accumul
ation
Step
Micro 4
batch
size per
GPU
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Hybrid Compression Solution (MZHybrid)

e lossy ZFP compression for Data Parallel gradient Allreduce + lossless MPC compression
for Model Parallel (TP + PP) communication

e Good performance speedup (4.4% increase for samples/sec & 5.3% increase for TFLOPS),
loss curves greatly improved

60 - . ] - - ——Baseline MVAPICH2-GDR MzHybrid ZFP-8 MzHybrid ZFP-16
# Baseline MVAPICH2-GDR 8 MZHybrid ZFP-8 i1 MZHybrid ZFP-16 16 [F1Baseline MVAPICH2-GDR ~  MZHybrid ZFP-8 [ MZHybrid ZFP-16
2.5
< 50
{«m:i s 4 245
E 0 E 12 24 “.‘
3 £ 19 2
T w0 S 8 235
2 E 3 k]
) 5 o 23
3 20 2 6 g
= g X g 235
10 = 22 '\/- "w AT SR
) WM AR
0 2.15
0
24 48 96 192 21
#GPUs #GPUs 0 500 1000 1500 2000 2500 3000 3500 4000
Step
Cluster: Lassen (NVIDIA V100)
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Hybrid Compression Solution (ZHybrid)

 Low-rate ZFP compression for Data Parallel gradient Allreduce + high-rate ZFP
compression for Model Parallel (TP + PP) communication

e Even better performance speedup (17.3% increase for samples/sec & 12.7% increase for
TFLOPS), loss curves still acceptable

1 Baseline MVAPICH2-GDR i ZHybrid {24 MP, 8DP) 1 ZHybrid {16 MP, 8 DP)| 70 - Baseline MVAPICHZ-GOR & ZHybrid (24 MP, 8DP) £ ZHybrid (16 MP, 8 DP)| —Baseline MVAPICH2-GDR ZHybrid {24 MP, 8DP]  —ZHybrid {16 MP, & DP}
i 2.5
60
18 o
= 2 1.17x 2.45
g 16 % 5o ‘
2 14 g 2.4
[+ v
§ 12 @ 40 8 235
E E: ¥
S 10 2 3 X
=] £ W)
g3 g S 225
g 6 £ g >
= 2.2
F o4 10
2 2.15
e 0 2.1
24 48 % 152 0 500 1000 1500 2000 2500 3000 3500 4000
#GPUs AGPUs Step
Cluster: Lassen (NVIDIA V100)
H {
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Conclusion
e Integrated lossless(MPC) and lossy(ZFP) compression algorithms into MVAPICH2-GDR

e Implemented various compression designs for various communication operations

— Proposed based collective-level compression for operation
— Proposed based compression design for optimizing communication
— Proposed compression design for optimizing and

e Accelerating Al workloads in Deep Learning training
— Reduced Alltoall communication time in DeepSpeed benchmark by up to 26.4%
— Reduced the PyTorch DDP training time by up to 15.0%
— Reduced the PyTorch FSDP training time by up to 31.7%
— Accelerated the training of LLMs like GPT-NeoX-20B by up to 17.3%

e Future work

— Study and incorporate more GPU-based compression algorithms (e.g., NVIDIA nvCOMP, etc.)

— Extend our designs to other common collectives
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Outline

e Motivation and Research Challenges
e Framework and data flow of GPU-based Point-to-Point On-the-fly compression
e Host-staging based collective-level compression for AlltoAll communication

e DDP training with Chunked-Chain based collective-level compression for Bcast
communication

e FSDP training with Ring-based collective-level compression for Allgather and Reduce-
Scatter

e LLM training with hybrid compression schemes
e Performance result: DeepSpeed Benchmark, DDP training, FSDP training, LLM training

e Conclusion & Future work
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